Lets Learn together... Happy Reading

" Two roads diverged in a wood, and I,
I took the one less traveled by,
And that has made all the difference "-Robert Frost

Find Area, Perimeter, Centroid, Equivdiameter, Roundness and Bounding Box without Using MATLAB Function ‘regionprops’


In MATLAB, the function ‘regionprops’ is used to measure the image properties. Here are some basic properties computed without using the function.
          Read an image and find the connected components using ‘bwlabel’ function.
Using the Labeled matrix as an input, the properties can be measured.

Example:
A=[1 0 0 1
      1 1 1 1
      0 0 1 1]

To find Area:
·        The total number of ‘ON’ pixels in the image.

The number of ones in the matrix is 8.
              
To find Centroid:
·        Find the row and column having pixel value one. Eg.[row,column]=find(label==1)
Row=[ 1     2     2     2     3     1     2     3]
Column=[ 1     1     2     3     3     4     4     4]

·        Find the mean of the row and column having pixel value one.
Mean of Row=2 and mean of column= 2.75



To find the Bounding Box:
·        We need 4 points, starting position(x,y) , length and breadth.
·        Minimum value of row and column minus 0.5 gives starting position(x,y) respectively
·        Minimum value of  row=1-0.5=0.5
·        Minimum value of column=1-0.5=0.5
·        Maximum value of column – minimum value of column+1 gives breadth of the box
·        Maximum value of column=4
·        Max value-min value of column=3+1
·        Maximum value of row- minimum value of row +1gives length of the box
·        maximum value of row=3
·        Max value – Min value=2+1
·        Bounding Box value for the given example:0.5000    0.5000    4.0000    3.0000
·        For more details on how to draw a rectangle check here: https://www.imageeprocessing.com/2011/06/how-to-draw-in-matlab.html



To find the Perimeter
·        Find the boundary of the labeled component
Boundary pixels:
     1     1
     2     2
     2     3
     1     4
     2     4
     3     4
     3     3
     2     2
     2     1
     1     1
·        Find the distance between the each adjoining pair of pixels around the border of the region.
·        Use the distance formula:
                                             
·        For instance, calculate the distance between the two points (1,1) and (2,2). distance=sqrt((2-1).^2+(2-1).^2)=1.41
·        Similarly, the distance is computed for all the pixel positions.
·        The perimeter for the given example is 10.2426

To find the Roundness:
·        Roundness of  an object can be determined using the formula: 
     Roundness=(4*Area*pi)/(Perimeter.^2) 
        If the Roundness is greater than 0.90 then, the object is circular in shape.
     Result= (4*8*3.14)/10.2426.^2=0.9582
           



To find the Equivdiameter
·        Formula: sqrt(4*Area/pi).
     Equivdiameter for the given example:3.1915
   

MATLAB CODE:

%Measure Basic Image Properties without using 'regionprops' function
%Measure Area, Perimeter, Centroid , Equvidiameter, Roundness and Bounding Box
clc
%Read Original Image
I=imread('coins.png');
%Convert to Binary
B=im2bw(I);
                                                 
%Fill the holes
C=imfill(B,'holes');
                                                    
 %Label the image
[Label,Total]=bwlabel(C,8);
%Object Number
num=4;
[row, col] = find(Label==num);

                                         
                                        
                                   
                               





%To find Bounding Box
sx=min(col)-0.5;
sy=min(row)-0.5;
breadth=max(col)-min(col)+1;
len=max(row)-min(row)+1;
BBox=[sx sy breadth len];
display(BBox);
figure,imshow(I);
hold on;
x=zeros([1 5]);
y=zeros([1 5]);
x(:)=BBox(1);
y(:)=BBox(2);
x(2:3)=BBox(1)+BBox(3);
y(3:4)=BBox(2)+BBox(4);
plot(x,y);

                              

%Find Area
Obj_area=numel(row);
display(Obj_area);
%Find Centroid
X=mean(col);
Y=mean(row);
Centroid=[X Y];
display(Centroid);
plot(X,Y,'ro','color','r');
hold off;
                                  

%Find Perimeter
BW=bwboundaries(Label==num);
c=cell2mat(BW(1));
Perimeter=0;
for i=1:size(c,1)-1
Perimeter=Perimeter+sqrt((c(i,1)-c(i+1,1)).^2+(c(i,2)-c(i+1,2)).^2);
end
display(Perimeter);
                                

%Find Equivdiameter
EquivD=sqrt(4*(Obj_area)/pi);
display(EquivD);


%Find Roundness
Roundness=(4*Obj_area*pi)/Perimeter.^2;
display(Roundness);
                          


%Calculation with 'regionprops'(For verification Purpose);
%Sdata=regionprops(Label,'all');
%Sdata(num).BoundingBox
%Sdata(num).Area
%Sdata(num).Centroid
%Sdata(num).Perimeter
%Sdata(num).EquivDiameter
                                           


like button Like "IMAGE PROCESSING" page

Auto Cropping- Based on labeling the connected components


                                                     This post is about labeling the connected components in a binary image and crop the connected components based on the label. The main two functions used for this simple operation are ‘bwlabel’ and ‘regionprops’.
                                                     I used ‘bwlabel’ to label the connected components.  After labeling, I used ‘regionprops’ function to find the rectangle containing the region.  To find the rectangle points, I used ‘BoundingBox’ property.
                                                    Then the labeled components are automatically cropped and the image is displayed. To crop an image, ‘imcrop’ function is used.

MATLAB CODE:


A=imread('coins.png');
figure,imshow(A); title('Original Image');





                                 


%Convert the Image to binary
B=im2bw(A);
 
%Fill the holes
C=imfill(B,'holes');
 
%Label the connected components
[Label,Total]=bwlabel(C,8);
figure,imshow(C); title('Labelled Image');










%Rectangle containing the region
Sdata=regionprops(Label,'BoundingBox');
 
%Crop all the Coins 
for i=1:Total
    Img=imcrop(A,Sdata(i).BoundingBox);
    Name=strcat('Object Number:',num2str(i));
    figure,imshow(Img); title(Name);
end








Another Example:

'coins.png'

Labeled Image




like button Like "IMAGE PROCESSING" page

Text On Sphere - MATLAB CODE


Text on Sphere-MATLAB CODE

              We can see how to wrap a text around a sphere. First obtain the x,y and z co-ordinates of  the sphere.These co-ordinates can be used as an input for surface object.
Surface object generates sphere using the co-ordinates.  Example:[x,y,z]=sphere(25); surface(x,y,z);
Now read a text image and convert it into binary.  Label the components in the image. You can also check how to label components without BWLABELfunction in MATLAB.   Now use the labeled image as a CDATA value in surface object.
Example: surface(x,y,z, ‘CDATA’,matrix);

MATLAB CODE:


%Input a text image
A=imread('quotes.png');


         


A=~im2bw(A);
B=bwlabel(A,8);
F=double(B);
mytext=flipud(F);


% Create the surface.
[x,y,z] = sphere(100);


figure,surface(x,y,z,'CData',mytext,'FaceColor','texturemap','FaceLighting','phong','EdgeLighting','phong','EdgeColor','none');




%set the colormap. Some built-in colormaps are pink, copper, jet, hot...
%colormap pink

%Here I created my own colormap, the colors are white[1 1 1], black[0 0 0] and %blue [0 0 1]. Initialize the map with zeros(black) for 256x3 matrix. %Add blue 
%color to some components(words). Initialize the first row with [ 1 1 1](white).





map=zeros([253 3]);
map(1,:)=0;
map(50:80,3)=1;
colormap(map);



%Create light object
light('position',[1 2 0 ],'Style','infinite','color',[0.8 0.7 0.8]);
light('position',[-2 -3 0 ],'color',[0.8 0.7 0.8]);


%Specify the viewpoint
axis square off
view(12,0);










Another Example: To create a GLOBE from a WORLD MAP



INPUT IMAGE















To convert a RGB image into SPHERE:
MATLAB CODE:




A=imread('mountain.jpg');
[mytext,map]=rgb2ind(A,256);
mytext=flipud(mytext);

% Create the surface.
[x,y,z] = sphere(100);

figure,surface(x,y,z,'CData',mytext,'FaceColor','texturemap','FaceLighting','phong','EdgeLighting','phong','EdgeColor','none');
%set the colormap. 

colormap(map);


%Create light object
light('position',[1 2 0 ],'Style','infinite','color',[0.8 0.7 0.8]);
light('position',[-2 -3 0 ],'color',[0.8 0.7 0.8]);


%Specify the viewpoint
axis square off
%view(12,0);
view(180,0);










Hope you enjoyed this post. Check the link for more images:http://www.facebook.com/media/set/?set=a.352096201499476.75050.241768945865536&type=1

like button Like "IMAGE PROCESSING" page
Previous Post Next Post Home
Google ping Hypersmash.com