Lets Learn together... Happy Reading

" Two roads diverged in a wood, and I,
I took the one less traveled by,
And that has made all the difference "-Robert Frost

Adaptive filtering-local noise filter


Adaptive filter is performed on the degraded image that contains original image and noise. The mean and variance are the two statistical measures that a local adaptive filter depends with a defined mxn window region. 






























A = imread('saturn.png');
B = rgb2gray(A);
sz = size(B,1)*size(B,2);


%Add gaussian noise with mean 0 and variance 0.005
B = imnoise(B,'gaussian',0,0.005);
figure,imshow(B); title('Image with gaussian noise');













B = double(B);

%Define the window size mxn
M = 5;
N = 5;

%Pad the matrix with zeros on all sides
C = padarray(B,[floor(M/2),floor(N/2)]);


lvar = zeros([size(B,1) size(B,2)]);
lmean = zeros([size(B,1) size(B,2)]);
temp = zeros([size(B,1) size(B,2)]);
NewImg = zeros([size(B,1) size(B,2)]);

for i = 1:size(C,1)-(M-1)
    for j = 1:size(C,2)-(N-1)
        
        
        temp = C(i:i+(M-1),j:j+(N-1));
        tmp =  temp(:);
             %Find the local mean and local variance for the local region        
        lmean(i,j) = mean(tmp);
        lvar(i,j) = mean(tmp.^2)-mean(tmp).^2;
        
    end
end

%Noise variance and average of the local variance
nvar = sum(lvar(:))/sz;

%If noise_variance > local_variance then local_variance=noise_variance
 lvar = max(lvar,nvar);     

 %Final_Image = B- (noise variance/local variance)*(B-local_mean);
 NewImg = nvar./lvar;
 NewImg = NewImg.*(B-lmean);
 NewImg = B-NewImg;

 %Convert the image to uint8 format.
 NewImg = uint8(NewImg);
figure,imshow(NewImg);title('Restored Image using Adaptive Local filter');



like button Like "IMAGE PROCESSING" page

Add salt and pepper noise to image

How to add salt and pepper noise to an image


          To obtain an image with ‘speckle’ or ‘salt and pepper’ noise we need to add white and black pixels randomly in the image matrix.



First convert the RGB image into grayscale image.
Then generate random values for the size of the matrix.
Here I used MATLAB function ‘randint’.





This function will generate random values for the given matrix size within the specified range.
For instance, consider an image matrix of size 4X3


Imgmatrix =
   237   107   166
   234    95   162
   239   116   169
   56   126    89


Generate random values for a 4X3 matrix with range 0 to 10.
randint(4,3,[0,10])

ans =
     4    10     4
     7     8     4
    10     0     5
     3    10     9

    

Now we can replace with pixel value zero (black) in the image matrix if there is ‘0’ value in the random matrix.

Now the image matrix will have black pixels.

Imgmatrix =
   237   107   166
   234    95   162
   239   0   169
   56   126    89


 
Similarly, replace the image matrix pixel value with ‘255’ if there is value ‘10’ in the random matrix.
The white pixels are now added.

Imgmatrix =
   237   255   166
   234    95   162
   255   0   169
   56   126    89

Black=0 white=255

 

MATLAB CODE:


A=imread('taj.jpg');
B=rgb2gray(A);


black=3;
white=253;
%Adjust the values in 'black' and 'white' to increase the noise.

NoiseImg = B;
    Rmatrix = randint(size(B,1),size(B,2),[0,255]);
    NoiseImg(Rmatrix <= black) = 0;
    NoiseImg(Rmatrix >=white) = 255;
    RImg=medfilt2(NoiseImg);
    figure,subplot(1,2,1),imshow(NoiseImg),title('Add ''Salt and Pepper'' Noise');
    subplot(1,2,2),imshow(RImg),title('After Noise Removal');






 I used the MATLAB function 'medfilt2' to remove noise. 


like button Like "IMAGE PROCESSING" page

I can't sleep Illusion


In this illusion, I used slanted lines in two different directions  to highlight the foreground from the background.

First, the background is formed with slanting lines in one direction.

Steps to form background with slanting lines:
1.       Get the size of the foreground image. For instance, MXN =5X8
2.       Initialize a matrix of size 1XN=1X8.
3.       Generate values for the matrix.
Eg. [10  10 250 250 10 10 250 250]ie [BBWWBBWW] B-Black, W-White
4.       Initialize another matrix of size MXN. In the first row copy the random values.
5.       For the second row perform circshift. By circshift the pixel at the first column will be moved to the last column and the remaining pixels are shifted to left by one.Eg [10 250 250 10 10 250 250 10].
      Now the colors will be [BWWBBWWB].
6.       Continue to perform circshift  for all the rows.  Now the slanting lines are formed.
   10    10   250   250    10    10   250   250
   10   250   250    10    10   250   250    10
   250   250    10    10   250   250    10    10
   250    10    10   250   250    10    10   250
    10    10   250   250    10    10   250   250


MATLAB CODE:
%Read the Image
TImg=imread('sleep.jpg');

m=size(TImg,1);
n=size(TImg,2);

if(mod(n,2)~=0)
    n=n-mod(n,2);
end   
if(mod(n,4)~=0)
        n=n-mod(n,4);
end
BImg=uint8(zeros([1 n 3]));
flag=0;
%Values for first column (bbwwbbwwbbww)
for i=1:2:n
    if(flag==1)
            BImg(1,i:i+1,:)=10;
            flag=0;
    else
            BImg(1,i:i+1,:)=240;
            flag=1;
    end
end
%Initialization
A=uint8(zeros([m size(BImg,2) 3]));
Arot=uint8(zeros([m size(BImg,2) 3]));
SImg=uint8(zeros([m size(BImg,2) 3]));
FImg=uint8(zeros([m size(BImg,2) 3]));
A(1,:,:)=BImg(1,:,:);

%Slanting lines
for i=2:m
    BImg=circshift(BImg,[1,-1]);
    A(i,:,:)=BImg(1,:,:);
end



Steps to perform on foreground Image:
1.       Rotate the background image from left to right.
2.       Convert the foreground image into binary image and negate it. Then perform image multiplication with the rotated background image.

MATLAB CODE:
%Flip the image from left to right
Arot(:,:,1)=fliplr(A(:,:,1));
Arot(:,:,2)=fliplr(A(:,:,2));
Arot(:,:,3)=fliplr(A(:,:,3));
%Foreground
BImg=uint8(~im2bw(TImg));
BImg=imresize(BImg,[size(Arot,1) size(Arot,2)]);
SImg(:,:,1)=BImg.*Arot(:,:,1);
SImg(:,:,2)=BImg.*Arot(:,:,2);
SImg(:,:,3)=BImg.*Arot(:,:,3);
SImg(SImg==0)=1;

Image Mask:
1.       Multiply the background image with the binary foreground image to obtain the mask.
MATLAB CODE:
%Background Image mask
BImg1=uint8(im2bw(TImg));
BImg1=imresize(BImg1,[size(Arot,1) size(Arot,2)]);
FImg(:,:,1)=BImg1.*A(:,:,1);
FImg(:,:,2)=BImg1.*A(:,:,2);
FImg(:,:,3)=BImg1.*A(:,:,3);
FImg(FImg==0)=1;







Combine Foreground Image and the background Image mask.

MATLAB CODE:
%Combine Background mask with foreground.
Zig=FImg.*SImg;
figure,imshow(Zig);

            




GUESS THE IMAGE: 
If you can read this then give your reactions...


I used square font to make this illusion. You can download the font at:http://fontzone.net/font-download/SF+Square+Head+Bold/

Check this link for more optical Illusion Images: Images from Blog

like button Like "IMAGE PROCESSING" page
Previous Post Next Post Home
Google ping Hypersmash.com