Consider the
result obtained after DCT. (Check 2d-DCT )
Apply
Inverse Discrete Cosine Transform to obtain the original Image.
MATLAB CODE:
%2-D INVERSE DISCRETE
COSINE TRANSFORM
%PREALLOCATE THE MATRIX
A=zeros(size(B));
Temp=zeros(size(B));
[M N]=size(B);
x=1:M;
x=repmat(x',1,N);
y=repmat(1:N,M,1);
figure,
imshow(log(abs(B)),[]);colormap(jet);title('After DCT');
for i=1:M
for j = 1: N
if(i==1)
AlphaP=sqrt(1/M);
else
AlphaP=sqrt(2/M);
end
if(j==1)
AlphaQ=sqrt(1/N);
else
AlphaQ=sqrt(2/N);
end
cs1=cos((pi*(2*x-1)*(i-1))/(2*M));
cs2=cos((pi*(2*y-1)*(j-1))/(2*N));
Temp=B.*cs1.*cs2*AlphaP*AlphaQ;
A(i,j)=sum(sum(Temp));
end
end
%OUTPUT
figure,
imshow(abs(A),[0 255]);title('Image after
IDCT');



:)
:(
:))
:((
=))
=D>
:D
:P
:-O
:-?
:-SS
:-f
d(
:-*
b-(
h-(
g-)
5-p
y-)
c-)
s-)
d-)
w-)
:-h
:X



0 comments:
Enjoyed Reading? Share Your Views