Consider the
result obtained after DCT. (Check 2d-DCT )
Apply
Inverse Discrete Cosine Transform to obtain the original Image.
MATLAB CODE:
%2-D INVERSE DISCRETE
COSINE TRANSFORM
%PREALLOCATE THE MATRIX
A=zeros(size(B));
Temp=zeros(size(B));
[M N]=size(B);
x=1:M;
x=repmat(x',1,N);
y=repmat(1:N,M,1);
figure,
imshow(log(abs(B)),[]);colormap(jet);title('After DCT');
for i=1:M
    for j = 1: N
        if(i==1)
          AlphaP=sqrt(1/M);
        else
          AlphaP=sqrt(2/M);
        end
        if(j==1)
          AlphaQ=sqrt(1/N);
        else
          AlphaQ=sqrt(2/N);
        end
        cs1=cos((pi*(2*x-1)*(i-1))/(2*M));
        cs2=cos((pi*(2*y-1)*(j-1))/(2*N));
        Temp=B.*cs1.*cs2*AlphaP*AlphaQ;
          A(i,j)=sum(sum(Temp));
    end
end
%OUTPUT
figure,
imshow(abs(A),[0 255]);title('Image after
IDCT');



 
 :)
:)
 :(
:(
 :))
:))
 :((
:((
 =))
=))
 =D>
=D>
 :D
:D
 :P
:P
 :-O
:-O
 :-?
:-?
 :-SS
:-SS
 :-f
:-f
 d(
d(
 :-*
:-*
 b-(
b-(
 h-(
h-(
 g-)
g-)
 5-p
5-p
 y-)
y-)
 c-)
c-)
 s-)
s-)
 d-)
d-)
 w-)
w-)
 :-h
:-h
 :X
:X



0 comments:
Enjoyed Reading? Share Your Views